Question	Answer
1	There are 3 groups of 3 hundreds. There is 1 group of 3 tens. There are 2 groups of 3 ones. There are 2 ones left over. $3,938 \div 3=1,312$ remainder 2
2	$8,407 \div 4=2,101$ remainder 3
3	a) $\begin{array}{\|l\|l\|l\|l\|l\|l} & 2 & 5 & 3 & 1 & r \end{array} 2$ $\begin{array}{\|l\|l\|l\|l\|l\|l\|l\|} \hline 2 & 1 & 4 & 1 & r & 3 \\ \hline 4 & 8 & 5 & 16 & 7 & & \\ \hline \end{array}$ $\left.\begin{array}{\|l\|l\|l\|l\|l\|l} & 1 & 3 & 1 & 1 & r \end{array}\right)$ b) $>$ $>$
4	Remainder of 1 Remainder of 2 Remainder of 3 Remainder of 4 $9,513 \div 4$ $5,066 \div 4$ $6,563 \div 4$ $6,562 \div 4$ $9,515 \div 4$ $1,234 \div 4$ The column for a remainder of 4 is empty. This is because when dividing by 4 the greatest possible remainder is 3
5	Yes All numbers ending in 0 or 5 can be divided exactly by 5 . So any number that is 1 more than a number ending in 0 or 5 will have a remainder of 1 when divided by 5
6	a) 3 b) 135
7	There are six possible ways: $345 \div 2 \quad 435 \div 2 \quad 453 \div 2 \quad 543 \div 2 \quad 253 \div 4 \quad 325 \div 4$ They are all divided by 2 or 4 None of the divisions by 5 or 3 have a remainder of 1

