(1)

Sort the metric units into the correct categories.

2
Match the measure to its definition.

the amount of matter that makes up a substance
the amount of space enclosed by a container

how much of a solid, liquid or gas an object can hold
capacity

(3) Decide which is the most appropriate unit for each item. a) the mass of an elephant
$\mathbf{g} \quad \mathrm{kg}$
l
tonne
b) the length of a classroom
cl cm
m
km
c) the capacity of a water bottle
cm ${ }^{3}$
m^{3}
ml
l
d) the length of a fly
mm
cm
m
(4) Decide which is the best estimate for each item.
a) the capacity of a glass

2 ml 20 ml 200 ml
2,000 ml
b) the length of a rounders bat

50 mm

50 cm
50 m
50 km
c) the mass of a car
$1.5 \mathrm{~g} \quad 1.5 \mathrm{~kg}$
d) the length of a football pitch

100 cm
100 m
100 km
100 mm
(5) Estimate the length of your classroom. Give units with your answer. Compare answers with a partner.
(6)

Do you agree with Mo?
Explain your thinking.

7 Estimate how much water it would take to fill a bath.
Explain your estimate to a partner.

Decide which is the best estimate for each item.
a) the capacity of a glass
2 ml
20 ml

200 ml
$2,000 \mathrm{ml}$
b) the length of a rounders bat

50 mm

50 cm
50 m

50 km

c) the mass of a car
$1.5 \mathrm{~g} \quad 1.5 \mathrm{~kg}$
d) the length of a football pitch

100 cm
100 m
100 km

5 Estimate the length of your classroom. Give units with your answer. Compare answers with a partner.
(6)

Do you agree with Mo?
Explain your thinking.

7
Estimate how much water it would take to fill a bath.
Explain your estimate to a partner.

8
Dora and Ron are estimating the capacity of a jug

They could both be correct.
Talk about why with a partner.
(9) Eva is thinking about how to estimate the capacity of a swimming pool.

Create your own way of estimating the capacity of a swimming pool.

10

Write a plan to estimate the mass of your school.

